The formula to calculate the Eccentricity of an Ellipse is:

\[ e = \sqrt{1 - \left(\frac{b}{a}\right)^2} \]

The Eccentricity of an Ellipse is the ratio of the linear eccentricity to the semi-major axis of the Ellipse. The Semi Minor Axis of an Ellipse is half of the length of the longest chord which is perpendicular to the line joining the foci of the Ellipse. The Semi Major Axis of an Ellipse is half of the chord passing through both the foci of the Ellipse.

Let's assume the following values:

- Semi Major Axis of Ellipse = 10 Meter
- Semi Minor Axis of Ellipse = 6 Meter

Using the formula:

\[ e = \sqrt{1 - \left(\frac{6}{10}\right)^2} = 0.8 \]

The Eccentricity of the Ellipse is 0.8.

Semi Major Axis (Meter) | Semi Minor Axis (Meter) | Eccentricity |
---|---|---|

9 | 6 | 0.745355992499930 |

9.1 | 6 | 0.751844328927355 |

9.2 | 6 | 0.758069381485335 |

9.3 | 6 | 0.764046405311420 |

9.4 | 6 | 0.769789468728746 |

9.5 | 6 | 0.775311571718749 |

9.6 | 6 | 0.780624749799800 |

9.7 | 6 | 0.785740165455308 |

9.8 | 6 | 0.790668188890225 |

9.9 | 6 | 0.795418469600405 |

10 | 6 | 0.800000000000000 |

10.1 | 6 | 0.804421172156420 |

10.2 | 6 | 0.808689828521619 |

10.3 | 6 | 0.812813307415576 |

10.4 | 6 | 0.816798483907511 |

10.5 | 6 | 0.820651806648290 |

10.6 | 6 | 0.824379331130320 |

10.7 | 6 | 0.827986749786277 |

10.8 | 6 | 0.831479419283098 |

10.9 | 6 | 0.834862385321101 |

11 | 6 | 0.838140405208444 |