The formula to calculate the Edge Length of the Base of a Right Square Pyramid given its Slant Height is:

\[ l_e = 2 \sqrt{h_{\text{slant}}^2 - h^2} \]

The Edge Length of the Base of a Right Square Pyramid is the length of the straight line connecting any two adjacent vertices of the base of the Right Square Pyramid. The Slant Height of a Right Square Pyramid is the length measured along the lateral face from the base to the apex of the Right Square Pyramid along the center of the face. The Height of a Right Square Pyramid is the length of the perpendicular from the apex to the base of the Right Square Pyramid.

Let's assume the following values:

- Slant Height of Right Square Pyramid = 16 Meter
- Height of Right Square Pyramid = 15 Meter

Using the formula:

\[ l_e = 2 \sqrt{16^2 - 15^2} = 11.13552872566 \text{ Meter} \]

The Edge Length of the Base of the Right Square Pyramid is 11.13552872566 Meter.

Slant Height (Meter) | Height (Meter) | Edge Length (Meter) |
---|---|---|

15 | 15 | 0.000000000000000 |

15.1 | 15 | 3.469870314579489 |

15.2 | 15 | 4.915282290977800 |

15.3 | 15 | 6.029925372672526 |

15.4 | 15 | 6.974238309665068 |

15.5 | 15 | 7.810249675906640 |

15.6 | 15 | 8.569714114251404 |

15.7 | 15 | 9.271461589199390 |

15.8 | 15 | 9.927738916792665 |

15.9 | 15 | 10.547037498748146 |

16 | 15 | 11.135528725660023 |

16.1 | 15 | 11.697863052711794 |

16.2 | 15 | 12.237646832622683 |

16.3 | 15 | 12.757742747053650 |

16.4 | 15 | 13.260467563400635 |

16.5 | 15 | 13.747727084867536 |

16.6 | 15 | 14.221111067704966 |

16.7 | 15 | 14.681961721786392 |

16.8 | 15 | 15.131424255502221 |

16.9 | 15 | 15.570484899321574 |