The formula to calculate Fracture Toughness is:

\[ KI = Y \cdot \sigma \cdot \sqrt{\pi \cdot a} \]

Fracture Toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. The Dimensionless Parameter in Fracture Toughness expression depends on both crack and specimen sizes and geometries, as well as the manner of load application. Applied Stress is denoted by the symbol σ. Crack Length represents the length of a surface crack, or half of the length of an internal crack.

Let's assume the following values:

- Dimensionless Parameter (Y) = 1.1
- Applied Stress (σ) = 93.3 Pascal
- Crack Length (a) = 1E-05 meters

Using the formula:

\[ KI = 1.1 \cdot 93.3 \cdot \sqrt{\pi \cdot 1E-05} = 0.57524024853892 \]

The Fracture Toughness is 0.57524024853892 Pascal sqrt(meter).

Dimensionless Parameter (Y) | Applied Stress (Pascal) | Crack Length (meters) | Fracture Toughness (Pascal sqrt(meter)) |
---|---|---|---|

1 | 93.3 | 1.0E-5 | 0.522945680489927 |

1.05 | 93.3 | 1.0E-5 | 0.549092964514423 |

1.1 | 93.3 | 1.0E-5 | 0.575240248538920 |

1.15 | 93.3 | 1.0E-5 | 0.601387532563416 |