The formula to calculate the Linear Eccentricity of an Ellipse given its Area, Eccentricity, and Semi Minor Axis is:

\[ c = e \times \left( \frac{A}{\pi \times b} \right) \]

The Linear Eccentricity of an Ellipse is the distance from the center to any of the foci of the Ellipse. The Eccentricity of an Ellipse is the ratio of the linear eccentricity to the semi major axis of the Ellipse. The Area of an Ellipse is the total quantity of plane enclosed by the boundary of the Ellipse. The Semi Minor Axis of an Ellipse is half of the length of the longest chord which is perpendicular to the line joining the foci of the Ellipse.

Let's assume the following values:

- Eccentricity of Ellipse = 0.8 Meter
- Area of Ellipse = 190 Square Meter
- Semi Minor Axis of Ellipse = 6 Meter

Using the formula:

\[ c = 0.8 \times \left( \frac{190}{\pi \times 6} \right) = 8.06385044998937 \text{ Meter} \]

The Linear Eccentricity of the Ellipse is 8.06385044998937 Meter.

Eccentricity (Meter) | Area (Square Meter) | Semi Minor Axis (Meter) | Linear Eccentricity (Meter) |
---|---|---|---|

0.7 | 190 | 6 | 7.055869143740694 |

0.71 | 190 | 6 | 7.156667274365560 |

0.72 | 190 | 6 | 7.257465404990428 |

0.73 | 190 | 6 | 7.358263535615294 |

0.74 | 190 | 6 | 7.459061666240162 |

0.75 | 190 | 6 | 7.559859796865029 |

0.76 | 190 | 6 | 7.660657927489896 |

0.77 | 190 | 6 | 7.761456058114764 |

0.78 | 190 | 6 | 7.862254188739630 |

0.79 | 190 | 6 | 7.963052319364498 |

0.8 | 190 | 6 | 8.063850449989365 |

0.81 | 190 | 6 | 8.164648580614232 |

0.82 | 190 | 6 | 8.265446711239099 |

0.83 | 190 | 6 | 8.366244841863965 |

0.84 | 190 | 6 | 8.467042972488834 |

0.85 | 190 | 6 | 8.567841103113700 |

0.86 | 190 | 6 | 8.668639233738567 |

0.87 | 190 | 6 | 8.769437364363435 |

0.88 | 190 | 6 | 8.870235494988302 |

0.89 | 190 | 6 | 8.971033625613169 |