The formula to calculate Amplitude (A) is:
\[ A = \frac{D}{f} \]
Where:
Amplitude is the maximum displacement or distance moved by a point on a wave from its equilibrium position, representing the wave's intensity or magnitude.
Total Distance Traveled is the cumulative distance covered by a wave as it propagates through a medium, encompassing the repetitive patterns of compression and rarefaction.
Wave Frequency is the number of oscillations or cycles of a wave that occur in a given period of time, characterizing the wave's repetitive pattern of motion in a medium.
Let's assume the following values:
Using the formula:
\[ A = \frac{D}{f} \]
Evaluating:
\[ A = \frac{60}{152.48} \]
The Amplitude is 0.393494228751312 meters.
Total Distance (meters) | Wave Frequency (Hertz) | Amplitude (meters) |
---|---|---|
50 | 140 | 0.357142857142857 |
50 | 145 | 0.344827586206897 |
50 | 150 | 0.333333333333333 |
50 | 155 | 0.322580645161290 |
50 | 160 | 0.312500000000000 |
55 | 140 | 0.392857142857143 |
55 | 145 | 0.379310344827586 |
55 | 150 | 0.366666666666667 |
55 | 155 | 0.354838709677419 |
55 | 160 | 0.343750000000000 |
60 | 140 | 0.428571428571429 |
60 | 145 | 0.413793103448276 |
60 | 150 | 0.400000000000000 |
60 | 155 | 0.387096774193548 |
60 | 160 | 0.375000000000000 |
65 | 140 | 0.464285714285714 |
65 | 145 | 0.448275862068966 |
65 | 150 | 0.433333333333333 |
65 | 155 | 0.419354838709677 |
65 | 160 | 0.406250000000000 |
70 | 140 | 0.500000000000000 |
70 | 145 | 0.482758620689655 |
70 | 150 | 0.466666666666667 |
70 | 155 | 0.451612903225806 |
70 | 160 | 0.437500000000000 |