The formula to calculate the Angular Displacement (θ) in the Nth Second of Accelerated Rotatory Motion is:
\[ θ = ωo + \left(\frac{2n - 1}{2}\right) \cdot α \]
Where:
Angular Displacement is defined as the shortest angle between the initial and the final points for a given object undergoing circular motion about a fixed point.
Initial Angular Velocity is the velocity at which motion starts.
The Nth Second is the n seconds time covered by the body.
Angular Acceleration refers to the time rate of change of angular velocity.
Let's assume the following values:
Using the formula:
\[ θ = 14 + \left(\frac{2 \cdot 4 - 1}{2}\right) \cdot 1.6 \]
Evaluating:
\[ θ = 14 + \left(\frac{7}{2}\right) \cdot 1.6 = 14 + 3.5 \cdot 1.6 = 14 + 5.6 = 19.6 \]
The Angular Displacement is 19.6 radians.
Initial Angular Velocity (ωo) (rad/s) | Nth Second (n) (s) | Angular Acceleration (α) (rad/s²) | Angular Displacement (θ) (rad) |
---|---|---|---|
10 | 2 | 1.2 | 11.8000 |
10 | 2 | 1.6 | 12.4000 |
10 | 2 | 2 | 13.0000 |
10 | 4 | 1.2 | 14.2000 |
10 | 4 | 1.6 | 15.6000 |
10 | 4 | 2 | 17.0000 |
10 | 6 | 1.2 | 16.6000 |
10 | 6 | 1.6 | 18.8000 |
10 | 6 | 2 | 21.0000 |
14 | 2 | 1.2 | 15.8000 |
14 | 2 | 1.6 | 16.4000 |
14 | 2 | 2 | 17.0000 |
14 | 4 | 1.2 | 18.2000 |
14 | 4 | 1.6 | 19.6000 |
14 | 4 | 2 | 21.0000 |
14 | 6 | 1.2 | 20.6000 |
14 | 6 | 1.6 | 22.8000 |
14 | 6 | 2 | 25.0000 |
18 | 2 | 1.2 | 19.8000 |
18 | 2 | 1.6 | 20.4000 |
18 | 2 | 2 | 21.0000 |
18 | 4 | 1.2 | 22.2000 |
18 | 4 | 1.6 | 23.6000 |
18 | 4 | 2 | 25.0000 |
18 | 6 | 1.2 | 24.6000 |
18 | 6 | 1.6 | 26.8000 |
18 | 6 | 2 | 29.0000 |