The formula to calculate the Angle of Asymptotes is:
\[ \theta_k = \frac{(2 \cdot (\text{modulus}(N - M) - 1) + 1) \cdot \pi}{\text{modulus}(N - M)} \]
Where:
The Angle of Asymptotes is the angle formed by asymptotes with the positive real axis.
Let's assume the following values:
Using the formula:
\[ \theta_k = \frac{(2 \cdot (\text{modulus}(13 - 6) - 1) + 1) \cdot \pi}{\text{modulus}(13 - 6)} \]
Evaluating:
\[ \theta_k = 5.83438635666676 \text{ rad} \]
The Angle of Asymptotes is 5.83438635666676 rad.
Number of Poles (N) | Number of Zeroes (M) | Angle of Asymptotes (θk, rad) |
---|---|---|
10 | 6 | 5.497787143782 |
11 | 6 | 5.654866776462 |
12 | 6 | 5.759586531581 |
13 | 6 | 5.834386356667 |
14 | 6 | 5.890486225481 |
15 | 6 | 5.934119456781 |