The formula to calculate Angle of Incidence is:
\[ i = D + A - e \]
Where:
Angle of Incidence is the angle at which a light ray or a beam of light strikes a surface, such as a lens, mirror, or prism, and is used to describe the orientation of the incident light.
Let's assume the following values:
Using the formula:
\[ i = 0.15707963267946 + 0.610865238197901 - 0.0698131700797601 \]
Evaluating:
\[ i = 0.698131700797601 \text{ rad} \]
The Angle of Incidence is 0.698131700797601 rad.
Angle of Deviation (D) | Angle of Prism (A) | Angle of Emergence (e) | Angle of Incidence (i, rad) |
---|---|---|---|
0.1 | 0.610865238197901 | 0.0698131700797601 | 0.641052068118 |
0.11 | 0.610865238197901 | 0.0698131700797601 | 0.651052068118 |
0.12 | 0.610865238197901 | 0.0698131700797601 | 0.661052068118 |
0.13 | 0.610865238197901 | 0.0698131700797601 | 0.671052068118 |
0.14 | 0.610865238197901 | 0.0698131700797601 | 0.681052068118 |
0.15 | 0.610865238197901 | 0.0698131700797601 | 0.691052068118 |
0.16 | 0.610865238197901 | 0.0698131700797601 | 0.701052068118 |
0.17 | 0.610865238197901 | 0.0698131700797601 | 0.711052068118 |
0.18 | 0.610865238197901 | 0.0698131700797601 | 0.721052068118 |
0.19 | 0.610865238197901 | 0.0698131700797601 | 0.731052068118 |