The formula to calculate Angular Momentum (L) is:
\[ L = I \cdot \omega \]
Where:
Angular Momentum is the degree to which a body rotates, giving its angular momentum.
Moment of Inertia is the measure of the resistance of a body to angular acceleration about a given axis.
Angular Speed is the rate at which an object rotates or revolves around a central point or axis.
Let's assume the following values:
Using the formula:
\[ L = I \cdot \omega \]
Evaluating:
\[ L = 1.125 \cdot 0.0314159265342982 \]
The Angular Momentum is 0.0353429173510855 Kilogram Square Meter per Second.
Moment of Inertia (Kilogram Square Meter) | Angular Speed (Radian per Second) | Angular Momentum (Kilogram Square Meter per Second) |
---|---|---|
1 | 0.02 | 0.020000000000000 |
1 | 0.025 | 0.025000000000000 |
1 | 0.03 | 0.030000000000000 |
1 | 0.035 | 0.035000000000000 |
1 | 0.04 | 0.040000000000000 |
1.25 | 0.02 | 0.025000000000000 |
1.25 | 0.025 | 0.031250000000000 |
1.25 | 0.03 | 0.037500000000000 |
1.25 | 0.035 | 0.043750000000000 |
1.25 | 0.04 | 0.050000000000000 |
1.5 | 0.02 | 0.030000000000000 |
1.5 | 0.025 | 0.037500000000000 |
1.5 | 0.03 | 0.045000000000000 |
1.5 | 0.035 | 0.052500000000000 |
1.5 | 0.04 | 0.060000000000000 |
1.75 | 0.02 | 0.035000000000000 |
1.75 | 0.025 | 0.043750000000000 |
1.75 | 0.03 | 0.052500000000000 |
1.75 | 0.035 | 0.061250000000000 |
1.75 | 0.04 | 0.070000000000000 |
2 | 0.02 | 0.040000000000000 |
2 | 0.025 | 0.050000000000000 |
2 | 0.03 | 0.060000000000000 |
2 | 0.035 | 0.070000000000000 |
2 | 0.04 | 0.080000000000000 |