The formula to calculate Angular Velocity (ω) is:
\[ ω = \frac{2 \cdot \pi \cdot N_A}{60} \]
Where:
Angular Velocity refers to how fast an object rotates or revolves relative to another point, i.e., how fast the angular position or orientation of an object changes with time.
Speed of Shaft A in RPM is the speed at which the shaft tends to vibrate violently in the transverse direction.
Let's assume the following values:
Using the formula:
\[ ω = \frac{2 \cdot \pi \cdot N_A}{60} \]
Evaluating:
\[ ω = \frac{2 \cdot \pi \cdot 9}{60} \]
The Angular Velocity is 0.942477796076938 rad/s.
Speed of Shaft A in RPM (NA) | Angular Velocity (ω) |
---|---|
5 | 0.523598775598299 |
6 | 0.628318530717959 |
7 | 0.733038285837618 |
8 | 0.837758040957278 |
9 | 0.942477796076938 |
10 | 1.047197551196598 |
11 | 1.151917306316257 |
12 | 1.256637061435917 |
13 | 1.361356816555577 |
14 | 1.466076571675237 |
15 | 1.570796326794896 |