The formula to calculate Angular Velocity (ω) is:
\[ ω = \frac{vt}{Rc} \]
Where:
Angular Velocity refers to how fast an object rotates or revolves relative to another point, i.e., how fast the angular position or orientation of an object changes with time.
Tangential Velocity is the linear speed of any object moving along a circular path.
Radius of Curvature is the reciprocal of the curvature.
Let's assume the following values:
Using the formula:
\[ ω = \frac{vt}{Rc} \]
Evaluating:
\[ ω = \frac{360}{15} \]
The Angular Velocity is 24.
Tangential Velocity (vt) | Radius of Curvature (Rc) | Angular Velocity (ω) |
---|---|---|
350 | 14 | 25.000000000000000 |
350 | 14.5 | 24.137931034482758 |
350 | 15 | 23.333333333333332 |
350 | 15.5 | 22.580645161290324 |
350 | 16 | 21.875000000000000 |
355 | 14 | 25.357142857142858 |
355 | 14.5 | 24.482758620689655 |
355 | 15 | 23.666666666666668 |
355 | 15.5 | 22.903225806451612 |
355 | 16 | 22.187500000000000 |
360 | 14 | 25.714285714285715 |
360 | 14.5 | 24.827586206896552 |
360 | 15 | 24.000000000000000 |
360 | 15.5 | 23.225806451612904 |
360 | 16 | 22.500000000000000 |
365 | 14 | 26.071428571428573 |
365 | 14.5 | 25.172413793103448 |
365 | 15 | 24.333333333333332 |
365 | 15.5 | 23.548387096774192 |
365 | 16 | 22.812500000000000 |
370 | 14 | 26.428571428571427 |
370 | 14.5 | 25.517241379310345 |
370 | 15 | 24.666666666666668 |
370 | 15.5 | 23.870967741935484 |
370 | 16 | 23.125000000000000 |