The formula to calculate the Arc Length of Circular Arc (lArc) is:
\[ l_{\text{Arc}} = \frac{C_{\text{Circle}} \cdot \angle_{\text{Arc}}}{2 \pi} \]
Arc Length of Circular Arc is the length of a piece of the boundary of a circle cut at a particular central angle. Circumference of Circle of Circular Arc is the total length of the boundary of the circle from which the Circular Arc is formed. Angle of Circular Arc is the angle subtended by the end points of a Circular Arc with the center of the circle from which the arc is formed.
Let's assume the following values:
Using the formula:
\[ l_{\text{Arc}} = \frac{30 \cdot 0.698131700797601}{2 \pi} \approx 3.33333333333271 \]
The Arc Length of the Circular Arc is approximately 3.33333333333271 Meter.
Circumference (Meter) | Angle (Radian) | Arc Length (Meter) |
---|---|---|
10 | 0.6981317007976 | 1.111111111110903 |
20 | 0.6981317007976 | 2.222222222221806 |
30 | 0.6981317007976 | 3.333333333332709 |
40 | 0.6981317007976 | 4.444444444443612 |
50 | 0.6981317007976 | 5.555555555554514 |