The formula to calculate the Area of an Equilateral Triangle is:
\[ A = \frac{\sqrt{3}}{4} l_e^2 \]
The Area of an Equilateral Triangle is the amount of space or region occupied by the Equilateral triangle in the plane. The Edge Length of an Equilateral Triangle is the length of one of the sides of the Equilateral Triangle. In an Equilateral Triangle, all three sides are equal.
Let's assume the following value:
Using the formula:
\[ A = \frac{\sqrt{3}}{4} \times 8^2 = 27.712812921102 \text{ Square Meter} \]
The Area of the Equilateral Triangle is 27.712812921102 Square Meter.
Edge Length of Equilateral Triangle (Meter) | Area of Equilateral Triangle (Square Meter) |
---|---|
7 | 21.217622392718745 |
7.1 | 21.828170302386773 |
7.2 | 22.447378466092644 |
7.3 | 23.075246883836360 |
7.4 | 23.711775555617919 |
7.5 | 24.356964481437323 |
7.6 | 25.010813661294574 |
7.7 | 25.673323095189666 |
7.8 | 26.344492783122600 |
7.9 | 27.024322725093384 |
8 | 27.712812921102010 |
8.1 | 28.409963371148482 |
8.2 | 29.115774075232792 |
8.3 | 29.830245033354956 |
8.4 | 30.553376245514958 |
8.5 | 31.285167711712809 |
8.6 | 32.025619431948499 |
8.7 | 32.774731406222031 |
8.8 | 33.532503634533413 |
8.9 | 34.298936116882636 |
9 | 35.074028853269709 |