Area of Parallelogram given Diagonals and Obtuse Angle between Diagonals Calculator

Calculate Area of Parallelogram given Diagonals and Obtuse Angle between Diagonals







Formula

The formula to calculate the Area of a Parallelogram given Diagonals and Obtuse Angle between Diagonals is:

\[ A = \frac{1}{2} \cdot d_{Long} \cdot d_{Short} \cdot \sin(\angle_{d(Obtuse)}) \]

Where:

Definition

The Area of a Parallelogram is the total quantity of plane enclosed by the boundary of the Parallelogram.

The Long Diagonal of a Parallelogram is the length of the line joining the pair of acute angle corners of a Parallelogram.

The Short Diagonal of a Parallelogram is the length of the line joining the pair of obtuse angle corners of a Parallelogram.

The Obtuse Angle between the Diagonals of a Parallelogram is the angle made by the diagonals of the Parallelogram which is greater than 90 degrees.

How to calculate the Area of a Parallelogram given Diagonals and Obtuse Angle between Diagonals

Let's assume the following values:

Using the formula:

\[ A = \frac{1}{2} \cdot 18 \cdot 9 \cdot \sin(2.2689280275922) \]

Evaluating:

\[ A = \frac{1}{2} \cdot 18 \cdot 9 \cdot \sin(2.2689280275922) \]

The Area of the Parallelogram is approximately 62.0495998926595 Square Meter.

Area of Parallelogram given Diagonals and Obtuse Angle between Diagonals Conversion Chart

Long Diagonal of Parallelogram (Meter) Short Diagonal of Parallelogram (Meter) Obtuse Angle between Diagonals of Parallelogram (Radian) Area of Parallelogram (Square Meter)
16 8 2 58.195035316843629
16 8 2.1 55.245399465527917
16 8 2.2 51.743769844453766
16 8 2.3 47.725133579310082
16 8 2.4 43.229643555273640
16 9 2 65.469414731449078
16 9 2.1 62.151074398718904
16 9 2.2 58.211741075010487
16 9 2.3 53.690775276723841
16 9 2.4 48.633348999682845
16 10 2 72.743794146054540
16 10 2.1 69.056749331909899
16 10 2.2 64.679712305567207
16 10 2.3 59.656416974137599
16 10 2.4 54.037054444092050
17 8 2 61.832225024146354
17 8 2.1 58.698236932123415
17 8 2.2 54.977755459732123
17 8 2.3 50.707954428016961
17 8 2.4 45.931496277478246
17 9 2 69.561253152164653
17 9 2.1 66.035516548638839
17 9 2.2 61.849974892198645
17 9 2.3 57.046448731519085
17 9 2.4 51.672933312163025
17 10 2 77.290281280182938
17 10 2.1 73.372796165154270
17 10 2.2 68.722194324665153
17 10 2.3 63.384943035021202
17 10 2.4 57.414370346847804
18 8 2 65.469414731449078
18 8 2.1 62.151074398718904
18 8 2.2 58.211741075010487
18 8 2.3 53.690775276723841
18 8 2.4 48.633348999682845
18 9 2 73.653091572880214
18 9 2.1 69.919958698558773
18 9 2.2 65.488208709386797
18 9 2.3 60.402122186314323
18 9 2.4 54.712517624643198
18 10 2 81.836768414311351
18 10 2.1 77.688842998398627
18 10 2.2 72.764676343763114
18 10 2.3 67.113469095904804
18 10 2.4 60.791686249603558
19 8 2 69.106604438751816
19 8 2.1 65.603911865314402
19 8 2.2 61.445726690288851
19 8 2.3 56.673596125430720
19 8 2.4 51.335201721887444
19 9 2 77.744929993595790
19 9 2.1 73.804400848478707
19 9 2.2 69.126442526574948
19 9 2.3 63.757795641109560
19 9 2.4 57.752101937123378
19 10 2 86.383255548439763
19 10 2.1 82.004889831642998
19 10 2.2 76.807158362861060
19 10 2.3 70.841995156788400
19 10 2.4 64.169002152359312
20 8 2 72.743794146054540
20 8 2.1 69.056749331909899
20 8 2.2 64.679712305567207
20 8 2.3 59.656416974137599
20 8 2.4 54.037054444092050
20 9 2 81.836768414311351
20 9 2.1 77.688842998398627
20 9 2.2 72.764676343763114
20 9 2.3 67.113469095904804
20 9 2.4 60.791686249603558
20 10 2 90.929742682568175
20 10 2.1 86.320936664887370
20 10 2.2 80.849640381959006
20 10 2.3 74.570521217672010
20 10 2.4 67.546318055115066