The formula to calculate the Area of a Rectangle given Perimeter and Diagonal is:
\[ A = \frac{\left(\frac{P}{2}\right)^2 - d^2}{2} \]
Where:
The Area of a Rectangle is the total quantity of plane enclosed by the boundary of the Rectangle.
The Perimeter of a Rectangle is the total length of all the boundary lines of the Rectangle.
The Diagonal of a Rectangle is the length of the line joining any pair of opposite vertices of the Rectangle.
Let's assume the following values:
Using the formula:
\[ A = \frac{\left(\frac{28}{2}\right)^2 - 10^2}{2} \]
Evaluating:
\[ A = \frac{\left(\frac{28}{2}\right)^2 - 10^2}{2} \]
The Area of the Rectangle is 48 Square Meter.
Perimeter of Rectangle (Meter) | Diagonal of Rectangle (Meter) | Area of Rectangle (Square Meter) |
---|---|---|
24 | 8 | 40.000000000000000 |
24 | 9 | 31.500000000000000 |
24 | 10 | 22.000000000000000 |
24 | 11 | 11.500000000000000 |
24 | 12 | 0.000000000000000 |
26 | 8 | 52.500000000000000 |
26 | 9 | 44.000000000000000 |
26 | 10 | 34.500000000000000 |
26 | 11 | 24.000000000000000 |
26 | 12 | 12.500000000000000 |
28 | 8 | 66.000000000000000 |
28 | 9 | 57.500000000000000 |
28 | 10 | 48.000000000000000 |
28 | 11 | 37.500000000000000 |
28 | 12 | 26.000000000000000 |
30 | 8 | 80.500000000000000 |
30 | 9 | 72.000000000000000 |
30 | 10 | 62.500000000000000 |
30 | 11 | 52.000000000000000 |
30 | 12 | 40.500000000000000 |
32 | 8 | 96.000000000000000 |
32 | 9 | 87.500000000000000 |
32 | 10 | 78.000000000000000 |
32 | 11 | 67.500000000000000 |
32 | 12 | 56.000000000000000 |