The formula to calculate the Area of a Rhombus is:
\[ A = S^2 \cdot \sin(\angle_{\text{Acute}}) \]
The Area of a Rhombus is the amount of two-dimensional space occupied by the rhombus. The side of the rhombus is the length of any of its four edges. The acute angle of the rhombus is the angle inside the rhombus which is less than 90 degrees.
Let's assume the following values:
Using the formula:
\[ A = 10^2 \cdot \sin(0.785398163397301) \approx 70.7106781186443 \, \text{square meters} \]
The Area of the Rhombus is approximately 70.7106781186443 square meters.
Side (meters) | Acute Angle (radians) | Area (square meters) |
---|---|---|
9 | 0.785398163397301 | 57.275649276101909 |
9.1 | 0.785398163397301 | 58.555512550049365 |
9.2 | 0.785398163397301 | 59.849517959620556 |
9.3 | 0.785398163397301 | 61.157665504815469 |
9.4 | 0.785398163397301 | 62.479955185634111 |
9.5 | 0.785398163397301 | 63.816387002076489 |
9.6 | 0.785398163397301 | 65.166960954142581 |
9.7 | 0.785398163397301 | 66.531677041832410 |
9.8 | 0.785398163397301 | 67.910535265145981 |
9.9 | 0.785398163397301 | 69.303535624083267 |
10 | 0.785398163397301 | 70.710678118644282 |
10.1 | 0.785398163397301 | 72.131962748829025 |
10.2 | 0.785398163397301 | 73.567389514637497 |
10.3 | 0.785398163397301 | 75.016958416069699 |
10.4 | 0.785398163397301 | 76.480669453125643 |
10.5 | 0.785398163397301 | 77.958522625805301 |
10.6 | 0.785398163397301 | 79.450517934108689 |
10.7 | 0.785398163397301 | 80.956655378035805 |
10.8 | 0.785398163397301 | 82.476934957586650 |
10.9 | 0.785398163397301 | 84.011356672761224 |
11 | 0.785398163397301 | 85.559920523559526 |