The formula to calculate the Area of a Triangle is:
\[ \text{Area} = \sqrt{(\text{Side A} + \text{Side B} + \text{Side C}) \cdot (\text{Side B} + \text{Side C} - \text{Side A}) \cdot (\text{Side A} - \text{Side B} + \text{Side C}) \cdot (\text{Side A} + \text{Side B} - \text{Side C})} \div 4 \]
Where:
The Area of Triangle is the amount of region or space occupied by the triangle.
Let's assume the following values:
Using the formula:
\[ \text{Area} = \sqrt{(10 + 14 + 20) \cdot (14 + 20 - 10) \cdot (10 - 14 + 20) \cdot (10 + 14 - 20)} \div 4 \]
Evaluating:
\[ \text{Area} = \sqrt{44 \cdot 24 \cdot 16 \cdot 4} \div 4 \]
\[ \text{Area} = \sqrt{67584} \div 4 \]
\[ \text{Area} = 259.9923072370877 \div 4 \]
\[ \text{Area} = 64.9923072370877 \]
The Area of the Triangle is 64.9923072370877 square meters.
Side A (m) | Side B (m) | Side C (m) | Area (square meters) |
---|---|---|---|
5 | 10 | 15 | 0.000000000000 |
5 | 10 | 20 | nan |
5 | 10 | 25 | nan |
5 | 15 | 15 | 36.975498644373 |
5 | 15 | 20 | 0.000000000000 |
5 | 15 | 25 | nan |
5 | 20 | 15 | 0.000000000000 |
5 | 20 | 20 | 49.607837082461 |
5 | 20 | 25 | 0.000000000000 |
10 | 10 | 15 | 49.607837082461 |
10 | 10 | 20 | 0.000000000000 |
10 | 10 | 25 | nan |
10 | 15 | 15 | 70.710678118655 |
10 | 15 | 20 | 72.618437741389 |
10 | 15 | 25 | 0.000000000000 |
10 | 20 | 15 | 72.618437741389 |
10 | 20 | 20 | 96.824583655185 |
10 | 20 | 25 | 94.991775959817 |
15 | 10 | 15 | 70.710678118655 |
15 | 10 | 20 | 72.618437741389 |
15 | 10 | 25 | 0.000000000000 |
15 | 15 | 15 | 97.427857925749 |
15 | 15 | 20 | 111.803398874989 |
15 | 15 | 25 | 103.644524698606 |
15 | 20 | 15 | 111.803398874989 |
15 | 20 | 20 | 139.053721633044 |
15 | 20 | 25 | 150.000000000000 |