The formula to calculate Armature Current is:
\[ I_a = \frac{P_{\text{conv}}}{V_a} \]
Armature Current is defined as the current developed in the armature of an electrical DC generator due to the movement of the rotor. Converted Power refers to the electrical power output that is generated by the conversion of mechanical energy into electrical energy. Armature Voltage is defined as the voltage developed at the terminals of the armature winding of an AC or DC machine during the generation of power.
Let's assume the following values:
Using the formula:
\[ I_a = \frac{150.5}{200} \approx 0.7525 \]
The Armature Current is approximately 0.7525 Ampere.
Converted Power (Watt) | Armature Voltage (Volt) | Armature Current (Ampere) |
---|---|---|
140 | 190 | 0.7368 |
140 | 195 | 0.7179 |
140 | 200 | 0.7000 |
140 | 205 | 0.6829 |
140 | 210 | 0.6667 |
142 | 190 | 0.7474 |
142 | 195 | 0.7282 |
142 | 200 | 0.7100 |
142 | 205 | 0.6927 |
142 | 210 | 0.6762 |
144 | 190 | 0.7579 |
144 | 195 | 0.7385 |
144 | 200 | 0.7200 |
144 | 205 | 0.7024 |
144 | 210 | 0.6857 |
146 | 190 | 0.7684 |
146 | 195 | 0.7487 |
146 | 200 | 0.7300 |
146 | 205 | 0.7122 |
146 | 210 | 0.6952 |
148 | 190 | 0.7789 |
148 | 195 | 0.7590 |
148 | 200 | 0.7400 |
148 | 205 | 0.7220 |
148 | 210 | 0.7048 |
150 | 190 | 0.7895 |
150 | 195 | 0.7692 |
150 | 200 | 0.7500 |
150 | 205 | 0.7317 |
150 | 210 | 0.7143 |
152 | 190 | 0.8000 |
152 | 195 | 0.7795 |
152 | 200 | 0.7600 |
152 | 205 | 0.7415 |
152 | 210 | 0.7238 |
154 | 190 | 0.8105 |
154 | 195 | 0.7897 |
154 | 200 | 0.7700 |
154 | 205 | 0.7512 |
154 | 210 | 0.7333 |
156 | 190 | 0.8211 |
156 | 195 | 0.8000 |
156 | 200 | 0.7800 |
156 | 205 | 0.7610 |
156 | 210 | 0.7429 |
158 | 190 | 0.8316 |
158 | 195 | 0.8103 |
158 | 200 | 0.7900 |
158 | 205 | 0.7707 |
158 | 210 | 0.7524 |
160 | 190 | 0.8421 |
160 | 195 | 0.8205 |
160 | 200 | 0.8000 |
160 | 205 | 0.7805 |
160 | 210 | 0.7619 |