The formula to calculate the base circumference of a cone given its lateral surface area and slant height is:
\[ C_{\text{Base}} = 2 \frac{LSA}{h_{\text{Slant}}} \]
Where:
The base circumference of a cone is the total length of the boundary of the base circular surface of the cone.
The lateral surface area of a cone is the total quantity of plane enclosed on the lateral curved surface of the cone.
The slant height of a cone is the length of the line segment joining the apex of the cone to any point on the circumference of the circular base of the cone.
Let's assume the following values:
Using the formula:
\[ C_{\text{Base}} = 2 \frac{350}{11} \approx 63.6364 \, \text{meters} \]
The base circumference is approximately 63.6364 meters.
Lateral Surface Area (square meters) | Slant Height (meters) | Base Circumference (meters) |
---|---|---|
300 | 10 | 60.0000 |
300 | 11 | 54.5455 |
300 | 12 | 50.0000 |
310 | 10 | 62.0000 |
310 | 11 | 56.3636 |
310 | 12 | 51.6667 |
320 | 10 | 64.0000 |
320 | 11 | 58.1818 |
320 | 12 | 53.3333 |
330 | 10 | 66.0000 |
330 | 11 | 60.0000 |
330 | 12 | 55.0000 |
340 | 10 | 68.0000 |
340 | 11 | 61.8182 |
340 | 12 | 56.6667 |
350 | 10 | 70.0000 |
350 | 11 | 63.6364 |
350 | 12 | 58.3333 |
360 | 10 | 72.0000 |
360 | 11 | 65.4545 |
360 | 12 | 60.0000 |
370 | 10 | 74.0000 |
370 | 11 | 67.2727 |
370 | 12 | 61.6667 |
380 | 10 | 76.0000 |
380 | 11 | 69.0909 |
380 | 12 | 63.3333 |
390 | 10 | 78.0000 |
390 | 11 | 70.9091 |
390 | 12 | 65.0000 |
400 | 10 | 80.0000 |
400 | 11 | 72.7273 |
400 | 12 | 66.6667 |