The formula to calculate the Bend Allowance (Bal) is:
\[ Bal = \theta \cdot (r_c + \lambda \cdot t_{bar}) \]
Bend Allowance is the amount of material needed to create a bend in a piece of sheet metal. It accounts for the stretching and compression that occurs when the metal is bent. Subtended Angle in Radians is the angle formed by the bent metal. Radius is a straight line extending from the center or focus of a curve to any point on its perimeter. Stretch Factor is the elongation factor or strain ratio. Bar Thickness refers to the thickness of a bar-shaped object, such as a metal bar or a structural element in a construction project.
Let's assume the following values:
Using the formula:
\[ Bal = 3.14 \cdot (7E-06 + 0.44 \cdot 3E-06) \approx 2.61248E-05 \]
The Bend Allowance is approximately 2.61248E-05 m.
Subtended Angle in Radians (rad) | Radius (m) | Stretch Factor | Bar Thickness (m) | Bend Allowance (m) |
---|---|---|---|---|
3 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000024960000 |
3.1 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000025792000 |
3.2 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000026624000 |
3.3 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000027456000 |
3.4 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000028288000 |
3.5 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000029120000 |
3.6 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000029952000 |
3.7 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000030784000 |
3.8 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000031616000 |
3.9 | 7.0E-6 | 0.44 | 3.0E-6 | 0.000032448000 |