The formula to calculate the Break-Even Point is:
\[ \text{Break-Even Point} = \frac{\text{Fixed Costs}}{\text{Contribution Margin per Unit}} \]
Where:
The Break-Even Point is the point at which total revenue equals total costs, resulting in neither profit nor loss.
Let's assume the following values:
Using the formula:
\[ \text{Break-Even Point} = \frac{2000}{40} \]
Evaluating:
\[ \text{Break-Even Point} = 50 \]
The Break-Even Point is 50 units.
Fixed Costs ($) | Contribution Margin per Unit ($) | Break-Even Point (units) |
---|---|---|
1000 | 20 | 50.000000000000 |
1000 | 40 | 25.000000000000 |
1000 | 60 | 16.666666666667 |
1000 | 80 | 12.500000000000 |
1000 | 100 | 10.000000000000 |
2000 | 20 | 100.000000000000 |
2000 | 40 | 50.000000000000 |
2000 | 60 | 33.333333333333 |
2000 | 80 | 25.000000000000 |
2000 | 100 | 20.000000000000 |
3000 | 20 | 150.000000000000 |
3000 | 40 | 75.000000000000 |
3000 | 60 | 50.000000000000 |
3000 | 80 | 37.500000000000 |
3000 | 100 | 30.000000000000 |
4000 | 20 | 200.000000000000 |
4000 | 40 | 100.000000000000 |
4000 | 60 | 66.666666666667 |
4000 | 80 | 50.000000000000 |
4000 | 100 | 40.000000000000 |
5000 | 20 | 250.000000000000 |
5000 | 40 | 125.000000000000 |
5000 | 60 | 83.333333333333 |
5000 | 80 | 62.500000000000 |
5000 | 100 | 50.000000000000 |