Critical Stress for Crack Propagation Calculator

Calculate Critical Stress







Formula

The formula to calculate the critical stress for crack propagation is:

\[ \sigma_c = \sqrt{\frac{2 E \gamma_s}{\pi a}} \]

Where:

Definition

Critical stress is the stress required for crack propagation in a brittle material.

Young's Modulus is a mechanical property that describes the relationship between longitudinal stress and longitudinal strain in a material.

Specific surface energy is the energy needed to create a new surface during crack propagation in a brittle material.

Crack length represents the length of a surface crack or half of the length of an internal crack.

Example Calculation

Let's assume the following values:

Using the formula:

\[ \sigma_c = \sqrt{\frac{2 \cdot 15 \cdot 0.3}{\pi \cdot 1E-05}} \approx 535.237234845831 \, \text{Pa} \]

The critical stress is approximately 535.237234845831 Pa.

Conversion Chart

Young's Modulus (N/m) Specific Surface Energy (N/m) Crack Length (m) Critical Stress (Pa)
10 0.1 1.0E-6 797.884560802865
10 0.1 1.0E-5 252.313252202016
10 0.1 0.0001 79.788456080287
10 0.2 1.0E-6 1,128.379167095513
10 0.2 1.0E-5 356.824823230554
10 0.2 0.0001 112.837916709551
10 0.3 1.0E-6 1,381.976597885342
10 0.3 1.0E-5 437.019372236832
10 0.3 0.0001 138.197659788534
10 0.4 1.0E-6 1,595.769121605731
10 0.4 1.0E-5 504.626504404032
10 0.4 0.0001 159.576912160573
10 0.5 1.0E-6 1,784.124116152771
10 0.5 1.0E-5 564.189583547756
10 0.5 0.0001 178.412411615277
12 0.1 1.0E-6 874.038744473663
12 0.1 1.0E-5 276.395319577068
12 0.1 0.0001 87.403874447366
12 0.2 1.0E-6 1,236.077446474207
12 0.2 1.0E-5 390.882009522336
12 0.2 0.0001 123.607744647421
12 0.3 1.0E-6 1,513.879513212096
12 0.3 1.0E-5 478.730736481719
12 0.3 0.0001 151.387951321210
12 0.4 1.0E-6 1,748.077488947327
12 0.4 1.0E-5 552.790639154137
12 0.4 0.0001 174.807748894733
12 0.5 1.0E-6 1,954.410047611680
12 0.5 1.0E-5 618.038723237103
12 0.5 0.0001 195.441004761168
14 0.1 1.0E-6 944.069743882630
14 0.1 1.0E-5 298.541066072092
14 0.1 0.0001 94.406974388263
14 0.2 1.0E-6 1,335.116235624909
14 0.2 1.0E-5 422.200824564475
14 0.2 0.0001 133.511623562491
14 0.3 1.0E-6 1,635.176762293252
14 0.3 1.0E-5 517.088294582641
14 0.3 0.0001 163.517676229325
14 0.4 1.0E-6 1,888.139487765259
14 0.4 1.0E-5 597.082132144185
14 0.4 0.0001 188.813948776526
14 0.5 1.0E-6 2,111.004122822376
14 0.5 1.0E-5 667.558117812455
14 0.5 0.0001 211.100412282238
16 0.1 1.0E-6 1,009.253008808064
16 0.1 1.0E-5 319.153824321146
16 0.1 0.0001 100.925300880806
16 0.2 1.0E-6 1,427.299292922217
16 0.2 1.0E-5 451.351666838205
16 0.2 0.0001 142.729929292222
16 0.3 1.0E-6 1,748.077488947327
16 0.3 1.0E-5 552.790639154137
16 0.3 0.0001 174.807748894733
16 0.4 1.0E-6 2,018.506017616128
16 0.4 1.0E-5 638.307648642292
16 0.4 0.0001 201.850601761613
16 0.5 1.0E-6 2,256.758334191025
16 0.5 1.0E-5 713.649646461109
16 0.5 0.0001 225.675833419103
18 0.1 1.0E-6 1,070.474469691663
18 0.1 1.0E-5 338.513750128654
18 0.1 0.0001 107.047446969166
18 0.2 1.0E-6 1,513.879513212096
18 0.2 1.0E-5 478.730736481719
18 0.2 0.0001 151.387951321210
18 0.3 1.0E-6 1,854.116169711310
18 0.3 1.0E-5 586.323014283504
18 0.3 0.0001 185.411616971131
18 0.4 1.0E-6 2,140.948939383326
18 0.4 1.0E-5 677.027500257308
18 0.4 0.0001 214.094893938333
18 0.5 1.0E-6 2,393.653682408596
18 0.5 1.0E-5 756.939756606048
18 0.5 0.0001 239.365368240860
20 0.1 1.0E-6 1,128.379167095513
20 0.1 1.0E-5 356.824823230554
20 0.1 0.0001 112.837916709551
20 0.2 1.0E-6 1,595.769121605731
20 0.2 1.0E-5 504.626504404032
20 0.2 0.0001 159.576912160573
20 0.3 1.0E-6 1,954.410047611680
20 0.3 1.0E-5 618.038723237104
20 0.3 0.0001 195.441004761168
20 0.4 1.0E-6 2,256.758334191025
20 0.4 1.0E-5 713.649646461109
20 0.4 0.0001 225.675833419103
20 0.5 1.0E-6 2,523.132522020160
20 0.5 1.0E-5 797.884560802865
20 0.5 0.0001 252.313252202016