The formula to calculate the Cube Root of a Number (X1/3) is:
\[ X^{1/3} = X^{(1/3)} \]
Where:
The Cube Root of a Number is the value that when multiplied by itself thrice or three times produces the original number.
Number \(X\) is a real number that can be used for the calculation of general formulas of numbers.
Let's assume the following value:
Using the formula:
\[ X^{1/3} = X^{(1/3)} \]
Evaluating:
\[ X^{1/3} = 25^{(1/3)} \]
The Cube Root of the Number is 2.92401773821287.
Number | Cube Root |
---|---|
1 | 1.00000000000000 |
2 | 1.25992104989487 |
3 | 1.44224957030741 |
4 | 1.58740105196820 |
5 | 1.70997594667670 |
6 | 1.81712059283214 |
7 | 1.91293118277239 |
8 | 2.00000000000000 |
9 | 2.08008382305190 |
10 | 2.15443469003188 |
11 | 2.22398009056932 |
12 | 2.28942848510666 |
13 | 2.35133468772076 |
14 | 2.41014226417523 |
15 | 2.46621207433047 |
16 | 2.51984209978975 |
17 | 2.57128159065824 |
18 | 2.62074139420890 |
19 | 2.66840164872195 |
20 | 2.71441761659491 |
21 | 2.75892417638112 |
22 | 2.80203933065539 |
23 | 2.84386697985157 |
24 | 2.88449914061482 |
25 | 2.92401773821287 |
26 | 2.96249606840737 |
27 | 3.00000000000000 |
28 | 3.03658897187566 |
29 | 3.07231682568585 |
30 | 3.10723250595386 |