The formula to calculate Current Density (J) is:
\[ J = \frac{I}{A_{cond}} \]
Where:
Electric Current Density is the amount of electric current per unit area of a given cross-section, typically measured in amperes per square meter.
Electric Current is the flow of electrons in a conductor, measured in amperes, and is a fundamental concept in understanding electrical circuits and devices.
Area of Conductor is the cross-sectional area of a conductor, which affects the flow of electric current and is essential for efficient energy transmission.
Let's assume the following values:
Using the formula:
\[ J = \frac{I}{A_{cond}} \]
Evaluating:
\[ J = \frac{2.1}{2.1 \times 10^{-8}} \]
The Current Density is 100000000 A/m².
Electric Current (I) | Area of Conductor (Acond) | Current Density (J) |
---|---|---|
1 | 1.0E-8 | 100,000,000.000000000000000 |
1 | 1.5E-8 | 66,666,666.666666656732559 |
1 | 2.0E-8 | 50,000,000.000000000000000 |
1 | 2.5E-8 | 40,000,000.000000000000000 |
1 | 3.0E-8 | 33,333,333.333333335816860 |
1.5 | 1.0E-8 | 150,000,000.000000000000000 |
1.5 | 1.5E-8 | 99,999,999.999999985098839 |
1.5 | 2.0E-8 | 75,000,000.000000000000000 |
1.5 | 2.5E-8 | 60,000,000.000000000000000 |
1.5 | 3.0E-8 | 50,000,000.000000007450581 |
2 | 1.0E-8 | 200,000,000.000000000000000 |
2 | 1.5E-8 | 133,333,333.333333313465118 |
2 | 2.0E-8 | 100,000,000.000000000000000 |
2 | 2.5E-8 | 80,000,000.000000000000000 |
2 | 3.0E-8 | 66,666,666.666666671633720 |
2.5 | 1.0E-8 | 250,000,000.000000000000000 |
2.5 | 1.5E-8 | 166,666,666.666666656732559 |
2.5 | 2.0E-8 | 125,000,000.000000000000000 |
2.5 | 2.5E-8 | 100,000,000.000000000000000 |
2.5 | 3.0E-8 | 83,333,333.333333343267441 |
3 | 1.0E-8 | 300,000,000.000000000000000 |
3 | 1.5E-8 | 199,999,999.999999970197678 |
3 | 2.0E-8 | 150,000,000.000000000000000 |
3 | 2.5E-8 | 120,000,000.000000000000000 |
3 | 3.0E-8 | 100,000,000.000000014901161 |