The formula to calculate the Deflection of Fixed Beam with Uniformly Distributed Load is:
\[ \delta = \frac{W_{\text{beam}} \cdot L_{\text{beam}}^4}{384 \cdot e \cdot I} \]
Where:
Deflection of beam is the degree to which a structural element is displaced under a load (due to its deformation).
Let's assume the following values:
Using the formula:
\[ \delta = \frac{0.018 \cdot 4.8^4}{384 \cdot 50 \cdot 1.125} \]
Evaluating:
\[ \delta = 0.000442368 \text{ m} \]
The Deflection of Beam is 0.000442368 m.
Width of Beam (m) | Beam Length (m) | Elastic Modulus (Pa) | Moment of Inertia (kg·m²) | Deflection of Beam (m) |
---|---|---|---|---|
0.01 | 4.8 | 50 | 1.125 | 0.000245760000 |
0.012 | 4.8 | 50 | 1.125 | 0.000294912000 |
0.014 | 4.8 | 50 | 1.125 | 0.000344064000 |
0.016 | 4.8 | 50 | 1.125 | 0.000393216000 |
0.018 | 4.8 | 50 | 1.125 | 0.000442368000 |