The formula to calculate the Diagonal of a Rectangle given Area and Length is:
\[ d = \sqrt{\left(\frac{A}{l}\right)^2 + l^2} \]
Where:
The Diagonal of a Rectangle is the length of the line joining any pair of opposite vertices of the Rectangle.
Area of Rectangle is the total quantity of plane enclosed by the boundary of the Rectangle.
Length of Rectangle is any one of the pair of parallel sides which are longer than the remaining pair of parallel sides.
Let's assume the following values:
Using the formula:
\[ d = \sqrt{\left(\frac{A}{l}\right)^2 + l^2} \]
Evaluating:
\[ d = \sqrt{\left(\frac{48}{8}\right)^2 + 8^2} \]
The Diagonal of the Rectangle is 10 Meter.
Area of Rectangle (Square Meter) | Length of Rectangle (Meter) | Diagonal of Rectangle (Meter) |
---|---|---|
40 | 6 | 8.969082698049140 |
40 | 7 | 9.036208343353410 |
40 | 8 | 9.433981132056603 |
40 | 9 | 10.037583694283853 |
40 | 10 | 10.770329614269007 |
45 | 6 | 9.604686356149273 |
45 | 7 | 9.504027073417085 |
45 | 8 | 9.779602497034325 |
45 | 9 | 10.295630140987001 |
45 | 10 | 10.965856099730654 |
50 | 6 | 10.268614533832910 |
50 | 7 | 10.001020356106936 |
50 | 8 | 10.151970252123476 |
50 | 9 | 10.576587234588679 |
50 | 10 | 11.180339887498949 |
55 | 6 | 10.955718953029864 |
55 | 7 | 10.523055348973083 |
55 | 8 | 10.548252224894890 |
55 | 9 | 10.878680021599388 |
55 | 10 | 11.412712210513327 |
60 | 6 | 11.661903789690601 |
60 | 7 | 11.066588803922464 |
60 | 8 | 10.965856099730654 |
60 | 9 | 11.200198410940962 |
60 | 10 | 11.661903789690601 |