The formula to calculate the Diffusion Flux (J) is:
\[ J = D \cdot \left(\frac{\Delta C}{d}\right) \]
Where:
Diffusion flux is the mass diffusing through and perpendicular to a unit cross-sectional area of solid per unit of time.
Diffusion coefficient is the proportionality factor \(D\) in Fick's law.
Concentration difference is the difference in concentration of diffusing species.
Distance (length) across which the diffusion is taking place.
Let's assume the following values:
Using the formula:
\[ J = 800 \cdot \left(\frac{0.5}{0.01}\right) \]
Evaluating:
\[ J \approx 40000 \]
The Diffusion Flux is approximately 40000 Kilograms per Second per Square Meter.
Diffusion Coefficient (D) (Square Meters per Second) | Concentration Difference (ΔC) (Kilograms per Cubic Meter) | Distance (d) (Meters) | Diffusion Flux (J) (Kilograms per Second per Square Meter) |
---|---|---|---|
600 | 0.4 | 0.01 | 24,000.00 |
600 | 0.4 | 0.02 | 12,000.00 |
600 | 0.4 | 0.03 | 8,000.00 |
600 | 0.5 | 0.01 | 30,000.00 |
600 | 0.5 | 0.02 | 15,000.00 |
600 | 0.5 | 0.03 | 10,000.00 |
600 | 0.6 | 0.01 | 36,000.00 |
600 | 0.6 | 0.02 | 18,000.00 |
600 | 0.6 | 0.03 | 12,000.00 |
800 | 0.4 | 0.01 | 32,000.00 |
800 | 0.4 | 0.02 | 16,000.00 |
800 | 0.4 | 0.03 | 10,666.67 |
800 | 0.5 | 0.01 | 40,000.00 |
800 | 0.5 | 0.02 | 20,000.00 |
800 | 0.5 | 0.03 | 13,333.33 |
800 | 0.6 | 0.01 | 48,000.00 |
800 | 0.6 | 0.02 | 24,000.00 |
800 | 0.6 | 0.03 | 16,000.00 |
1000 | 0.4 | 0.01 | 40,000.00 |
1000 | 0.4 | 0.02 | 20,000.00 |
1000 | 0.4 | 0.03 | 13,333.33 |
1000 | 0.5 | 0.01 | 50,000.00 |
1000 | 0.5 | 0.02 | 25,000.00 |
1000 | 0.5 | 0.03 | 16,666.67 |
1000 | 0.6 | 0.01 | 60,000.00 |
1000 | 0.6 | 0.02 | 30,000.00 |
1000 | 0.6 | 0.03 | 20,000.00 |