The formula to calculate the Distance from Center to Light Source for Destructive Interference is:
\[ y_{\text{DI}} = \frac{(2n - 1) \cdot (\lambda \cdot D)}{2d} \]
Where:
Distance from Center to Light Source for Destructive Interference is the distance between the center of a light source and the point where destructive interference occurs in a wave pattern.
Let's assume the following values:
Using the formula:
\[ y_{\text{DI}} = \frac{(2 \cdot 5 - 1) \cdot (0.268 \cdot 0.202)}{2 \cdot 0.106} \]
Evaluating:
\[ y_{\text{DI}} = 2.29822641509434 \text{ m} \]
The Distance from Center to Light Source for Destructive Interference is 2.29822641509434 m.
Integer (n) | Wavelength (m) | Distance between Slits and Screen (m) | Distance between Two Coherent Sources (m) | Distance from Center to Light Source for Destructive Interference (m) |
---|---|---|---|---|
1 | 0.268 | 0.202 | 0.106 | 0.255358490566 |
2 | 0.268 | 0.202 | 0.106 | 0.766075471698 |
3 | 0.268 | 0.202 | 0.106 | 1.276792452830 |
4 | 0.268 | 0.202 | 0.106 | 1.787509433962 |
5 | 0.268 | 0.202 | 0.106 | 2.298226415094 |
6 | 0.268 | 0.202 | 0.106 | 2.808943396226 |
7 | 0.268 | 0.202 | 0.106 | 3.319660377358 |
8 | 0.268 | 0.202 | 0.106 | 3.830377358491 |
9 | 0.268 | 0.202 | 0.106 | 4.341094339623 |
10 | 0.268 | 0.202 | 0.106 | 4.851811320755 |