The formula to calculate the Economic Order Quantity is:
\[ \text{EOQ} = \sqrt{\frac{2 \times \text{Fixed Cost per Order} \times \text{Demand in Units Per Year}}{\text{Carrying Cost per Unit per Year}}} \]
Where:
Economic order quantity is an equation for the inventory that determines the ideal order quantity a company should purchase for its inventory given a set cost of production, demand rate, and other variables.
Let's assume the following values:
Using the formula:
\[ \text{EOQ} = \sqrt{\frac{2 \times 500 \times 2000}{3.5}} \]
Evaluating:
\[ \text{EOQ} = 285.71 \]
The Economic Order Quantity is 285.71 units.
| Fixed Cost per Order | Demand in Units Per Year | Carrying Cost per Unit per Year | Economic Order Quantity | 
|---|---|---|---|
| 400 | 1800 | 3.5 | 641.43 | 
| 400 | 1900 | 3.5 | 659.00 | 
| 400 | 2000 | 3.5 | 676.12 | 
| 400 | 2100 | 3.5 | 692.82 | 
| 400 | 2200 | 3.5 | 709.12 | 
| 450 | 1800 | 3.5 | 680.34 | 
| 450 | 1900 | 3.5 | 698.98 | 
| 450 | 2000 | 3.5 | 717.14 | 
| 450 | 2100 | 3.5 | 734.85 | 
| 450 | 2200 | 3.5 | 752.14 | 
| 500 | 1800 | 3.5 | 717.14 | 
| 500 | 1900 | 3.5 | 736.79 | 
| 500 | 2000 | 3.5 | 755.93 | 
| 500 | 2100 | 3.5 | 774.60 | 
| 500 | 2200 | 3.5 | 792.82 | 
| 550 | 1800 | 3.5 | 752.14 | 
| 550 | 1900 | 3.5 | 772.75 | 
| 550 | 2000 | 3.5 | 792.82 | 
| 550 | 2100 | 3.5 | 812.40 | 
| 550 | 2200 | 3.5 | 831.52 | 
| 600 | 1800 | 3.5 | 785.58 | 
| 600 | 1900 | 3.5 | 807.11 | 
| 600 | 2000 | 3.5 | 828.08 | 
| 600 | 2100 | 3.5 | 848.53 | 
| 600 | 2200 | 3.5 | 868.50 |