The formula to calculate the Edge Length of a Regular Polygon given the Area is:
\[ l_e = \sqrt{\frac{4 \cdot A \cdot \tan\left(\frac{\pi}{N_S}\right)}{N_S}} \]
The Edge Length of a Regular Polygon is the length of one of the sides of the polygon. The Area is the total region or space enclosed inside the polygon. The Number of Sides denotes the total number of sides of the polygon.
Let's assume the following values:
Using the formula:
\[ l_e = \sqrt{\frac{4 \cdot 480 \cdot \tan\left(\frac{\pi}{8}\right)}{8}} \approx 9.9705 \]
The Edge Length is approximately 9.9705 Meters.
Area (Square Meters) | Number of Sides | Edge Length (Meters) |
---|---|---|
450 | 8 | 9.653913793583738 |
460 | 8 | 9.760590112580891 |
470 | 8 | 9.866113072414958 |
480 | 8 | 9.970519292872503 |
490 | 8 | 10.073843495975519 |
500 | 8 | 10.176118640880409 |