The formula to calculate the equivalent capacitance for two capacitors in series is:
\[ C_{\text{eq, Series}} = \frac{C_1 \cdot C_2}{C_1 + C_2} \]
Where:
Equivalent capacitance for series is the total capacitance of a circuit consisting of multiple capacitors connected in series.
Capacitance of a capacitor is the ability of a capacitor to store electric charge, measured by the ratio of electric charge to voltage.
Let's assume the following values:
Using the formula:
\[ C_{\text{eq, Series}} = \frac{10 \cdot 3}{10 + 3} \approx 2.30769230769231 \, \text{Farads} \]
The equivalent capacitance for series is approximately 2.30769230769231 Farads.
| Capacitance of Capacitor 1 (F) | Capacitance of Capacitor 2 (F) | Equivalent Capacitance for Series (F) |
|---|---|---|
| 1 | 1 | 0.500000000000 |
| 1 | 2 | 0.666666666667 |
| 1 | 3 | 0.750000000000 |
| 1 | 4 | 0.800000000000 |
| 1 | 5 | 0.833333333333 |
| 1 | 6 | 0.857142857143 |
| 1 | 7 | 0.875000000000 |
| 1 | 8 | 0.888888888889 |
| 1 | 9 | 0.900000000000 |
| 1 | 10 | 0.909090909091 |
| 2 | 1 | 0.666666666667 |
| 2 | 2 | 1.000000000000 |
| 2 | 3 | 1.200000000000 |
| 2 | 4 | 1.333333333333 |
| 2 | 5 | 1.428571428571 |
| 2 | 6 | 1.500000000000 |
| 2 | 7 | 1.555555555556 |
| 2 | 8 | 1.600000000000 |
| 2 | 9 | 1.636363636364 |
| 2 | 10 | 1.666666666667 |
| 3 | 1 | 0.750000000000 |
| 3 | 2 | 1.200000000000 |
| 3 | 3 | 1.500000000000 |
| 3 | 4 | 1.714285714286 |
| 3 | 5 | 1.875000000000 |
| 3 | 6 | 2.000000000000 |
| 3 | 7 | 2.100000000000 |
| 3 | 8 | 2.181818181818 |
| 3 | 9 | 2.250000000000 |
| 3 | 10 | 2.307692307692 |
| 4 | 1 | 0.800000000000 |
| 4 | 2 | 1.333333333333 |
| 4 | 3 | 1.714285714286 |
| 4 | 4 | 2.000000000000 |
| 4 | 5 | 2.222222222222 |
| 4 | 6 | 2.400000000000 |
| 4 | 7 | 2.545454545455 |
| 4 | 8 | 2.666666666667 |
| 4 | 9 | 2.769230769231 |
| 4 | 10 | 2.857142857143 |
| 5 | 1 | 0.833333333333 |
| 5 | 2 | 1.428571428571 |
| 5 | 3 | 1.875000000000 |
| 5 | 4 | 2.222222222222 |
| 5 | 5 | 2.500000000000 |
| 5 | 6 | 2.727272727273 |
| 5 | 7 | 2.916666666667 |
| 5 | 8 | 3.076923076923 |
| 5 | 9 | 3.214285714286 |
| 5 | 10 | 3.333333333333 |
| 6 | 1 | 0.857142857143 |
| 6 | 2 | 1.500000000000 |
| 6 | 3 | 2.000000000000 |
| 6 | 4 | 2.400000000000 |
| 6 | 5 | 2.727272727273 |
| 6 | 6 | 3.000000000000 |
| 6 | 7 | 3.230769230769 |
| 6 | 8 | 3.428571428571 |
| 6 | 9 | 3.600000000000 |
| 6 | 10 | 3.750000000000 |
| 7 | 1 | 0.875000000000 |
| 7 | 2 | 1.555555555556 |
| 7 | 3 | 2.100000000000 |
| 7 | 4 | 2.545454545455 |
| 7 | 5 | 2.916666666667 |
| 7 | 6 | 3.230769230769 |
| 7 | 7 | 3.500000000000 |
| 7 | 8 | 3.733333333333 |
| 7 | 9 | 3.937500000000 |
| 7 | 10 | 4.117647058824 |
| 8 | 1 | 0.888888888889 |
| 8 | 2 | 1.600000000000 |
| 8 | 3 | 2.181818181818 |
| 8 | 4 | 2.666666666667 |
| 8 | 5 | 3.076923076923 |
| 8 | 6 | 3.428571428571 |
| 8 | 7 | 3.733333333333 |
| 8 | 8 | 4.000000000000 |
| 8 | 9 | 4.235294117647 |
| 8 | 10 | 4.444444444444 |
| 9 | 1 | 0.900000000000 |
| 9 | 2 | 1.636363636364 |
| 9 | 3 | 2.250000000000 |
| 9 | 4 | 2.769230769231 |
| 9 | 5 | 3.214285714286 |
| 9 | 6 | 3.600000000000 |
| 9 | 7 | 3.937500000000 |
| 9 | 8 | 4.235294117647 |
| 9 | 9 | 4.500000000000 |
| 9 | 10 | 4.736842105263 |
| 10 | 1 | 0.909090909091 |
| 10 | 2 | 1.666666666667 |
| 10 | 3 | 2.307692307692 |
| 10 | 4 | 2.857142857143 |
| 10 | 5 | 3.333333333333 |
| 10 | 6 | 3.750000000000 |
| 10 | 7 | 4.117647058824 |
| 10 | 8 | 4.444444444444 |
| 10 | 9 | 4.736842105263 |
| 10 | 10 | 5.000000000000 |