The formula to calculate the Force Required is:
\[ F = W_{load} \cdot \frac{\mu_{friction} \cdot \cos(\psi) - \sin(\psi)}{\cos(\psi) + \mu_{friction} \cdot \sin(\psi)} \]
Force Required is any interaction that, when unopposed, will change the motion of an object. In other words, a force can cause an object with mass to change its velocity.
Let's assume the following values:
Using the formula:
\[ F = 53 \cdot \frac{0.4 \cdot \cos(0.4363323129985) - \sin(0.4363323129985)}{\cos(0.4363323129985) + 0.4 \cdot \sin(0.4363323129985)} = -2.96185214685012 \text{ N} \]
Load (Wload) | Coefficient of Friction (μ) | Helix Angle (ψ) | Force Required (F) |
---|---|---|---|
50 N | 0.4 | 0.4363323129985 rad | -2.794200138538 N |
51 N | 0.4 | 0.4363323129985 rad | -2.850084141309 N |
52 N | 0.4 | 0.4363323129985 rad | -2.905968144079 N |
53 N | 0.4 | 0.4363323129985 rad | -2.961852146850 N |
54 N | 0.4 | 0.4363323129985 rad | -3.017736149621 N |
55 N | 0.4 | 0.4363323129985 rad | -3.073620152392 N |