The formula to calculate the Force Required is:
\[ F = W \left( \frac{\sin(\psi) + \mu_{friction} \cos(\psi)}{\cos(\psi) - \mu_{friction} \sin(\psi)} \right) \]
Force Required is any interaction that, when unopposed, will change the motion of an object. In other words, a force can cause an object with mass to change its velocity.
Let's assume the following values:
Using the formula:
\[ F = 60 \left( \frac{\sin(0.4363323129985) + 0.4 \cos(0.4363323129985)}{\cos(0.4363323129985) - 0.4 \sin(0.4363323129985)} \right) = 63.8966603008098 \text{ N} \]
Weight (W) | Helix Angle (ψ) | Coefficient of Friction (μ) | Force Required (F) |
---|---|---|---|
55 kg | 0.4363323129985 rad | 0.4 | 58.571938609076 N |
56 kg | 0.4363323129985 rad | 0.4 | 59.636882947422 N |
57 kg | 0.4363323129985 rad | 0.4 | 60.701827285769 N |
58 kg | 0.4363323129985 rad | 0.4 | 61.766771624116 N |
59 kg | 0.4363323129985 rad | 0.4 | 62.831715962463 N |
60 kg | 0.4363323129985 rad | 0.4 | 63.896660300810 N |
61 kg | 0.4363323129985 rad | 0.4 | 64.961604639157 N |
62 kg | 0.4363323129985 rad | 0.4 | 66.026548977503 N |
63 kg | 0.4363323129985 rad | 0.4 | 67.091493315850 N |
64 kg | 0.4363323129985 rad | 0.4 | 68.156437654197 N |
65 kg | 0.4363323129985 rad | 0.4 | 69.221381992544 N |