The formula to calculate the Gravitational Field of Ring (Iring) is:
\[ I_{ring} = -\frac{G \cdot m \cdot \cos(\theta)}{(a^2 + r_{ring}^2)^2} \]
Gravitational Field of Ring is the gravitational force experienced by a point mass due to a ring of uniform mass distribution. It is measured in Newton per Kilogram.
Let's assume the following values:
Using the formula:
\[ I_{ring} = -\frac{6.67408E-11 \cdot 33 \cdot \cos(1.50796447372282)}{(25^2 + 6^2)^2} \approx -3.16516609849568E-16 \]
The Gravitational Field of Ring is approximately -3.16516609849568E-16 Newton per Kilogram.
Mass (Kilogram) | Gravitational Field (Newton per Kilogram) |
---|---|
30 | 0.000000000000000 |
31 | 0.000000000000000 |
32 | 0.000000000000000 |
33 | 0.000000000000000 |
34 | 0.000000000000000 |
35 | 0.000000000000000 |
36 | 0.000000000000000 |
37 | 0.000000000000000 |
38 | 0.000000000000000 |
39 | 0.000000000000000 |
40 | 0.000000000000000 |