\[ d = 2 \times r \times \arcsin \left( \sqrt{\sin^2 \left( \frac{\Delta \text{lat}}{2} \right) + \cos(\text{lat}_1) \times \cos(\text{lat}_2) \times \sin^2 \left( \frac{\Delta \text{lon}}{2} \right)} \right) \]
Where:
The Haversine distance is a method of calculating the shortest distance between two points on the surface of a sphere, given their latitudes and longitudes. This calculation accounts for the Earth's curvature and provides more accurate results compared to planar distance calculations. It is commonly used in navigation and geographic information systems.
Point 1: Latitude 52.2296756, Longitude 21.0122287
Point 2: Latitude 41.8919300, Longitude 12.5113300
Radius of Earth: 6371 km
Haversine Distance: \[
2 \times 6371 \times \arcsin \left( \sqrt{\sin^2 \left( \frac{10.338}{2} \right) + \cos(0.911) \times \cos(0.732) \times \sin^2 \left( \frac{9.978}{2} \right)} \right) \approx 1318.68 \text{ km}
\]
Point 1: Latitude 34.052235, Longitude -118.243683
Point 2: Latitude 40.712776, Longitude -74.005974
Radius of Earth: 6371 km
Haversine Distance: \[
2 \times 6371 \times \arcsin \left( \sqrt{\sin^2 \left( \frac{0.115}{2} \right) + \cos(0.595) \times \cos(0.710) \times \sin^2 \left( \frac{0.125}{2} \right)} \right) \approx 3944.98 \text{ km}
\]