The formula to calculate the Height of a Cone given its volume and base area is:
\[ \text{Height} = \frac{3 \cdot \text{Volume}}{\text{Base Area}} \]
The Height of a Cone is the distance between the apex of the cone to the center of its circular base. The Volume of a Cone is the total quantity of three-dimensional space enclosed by the entire surface of the cone. The Base Area of a Cone is the total quantity of plane enclosed on the base circular surface of the cone.
Let's assume the following values:
Using the formula:
\[ \text{Height} = \frac{3 \cdot 520}{315} \approx 4.9524 \, \text{meters} \]
The Height is approximately 4.9524 meters.
Volume (cubic meters) | Base Area (square meters) | Height (meters) |
---|---|---|
500 | 300 | 5.000000000000000 |
500 | 305 | 4.918032786885246 |
500 | 310 | 4.838709677419355 |
500 | 315 | 4.761904761904762 |
500 | 320 | 4.687500000000000 |
500 | 325 | 4.615384615384615 |
500 | 330 | 4.545454545454546 |
510 | 300 | 5.100000000000000 |
510 | 305 | 5.016393442622951 |
510 | 310 | 4.935483870967742 |
510 | 315 | 4.857142857142857 |
510 | 320 | 4.781250000000000 |
510 | 325 | 4.707692307692308 |
510 | 330 | 4.636363636363637 |
520 | 300 | 5.200000000000000 |
520 | 305 | 5.114754098360656 |
520 | 310 | 5.032258064516129 |
520 | 315 | 4.952380952380953 |
520 | 320 | 4.875000000000000 |
520 | 325 | 4.800000000000000 |
520 | 330 | 4.727272727272728 |
530 | 300 | 5.300000000000000 |
530 | 305 | 5.213114754098361 |
530 | 310 | 5.129032258064516 |
530 | 315 | 5.047619047619047 |
530 | 320 | 4.968750000000000 |
530 | 325 | 4.892307692307693 |
530 | 330 | 4.818181818181818 |
540 | 300 | 5.400000000000000 |
540 | 305 | 5.311475409836065 |
540 | 310 | 5.225806451612903 |
540 | 315 | 5.142857142857143 |
540 | 320 | 5.062500000000000 |
540 | 325 | 4.984615384615385 |
540 | 330 | 4.909090909090909 |