Height of Cone given Volume and Base Area Calculator

Calculate Height





Formula

The formula to calculate the Height of a Cone given its volume and base area is:

\[ \text{Height} = \frac{3 \cdot \text{Volume}}{\text{Base Area}} \]

Definition

The Height of a Cone is the distance between the apex of the cone to the center of its circular base. The Volume of a Cone is the total quantity of three-dimensional space enclosed by the entire surface of the cone. The Base Area of a Cone is the total quantity of plane enclosed on the base circular surface of the cone.

Example Calculation

Let's assume the following values:

Using the formula:

\[ \text{Height} = \frac{3 \cdot 520}{315} \approx 4.9524 \, \text{meters} \]

The Height is approximately 4.9524 meters.

Conversion Chart

Volume (cubic meters) Base Area (square meters) Height (meters)
500 300 5.000000000000000
500 305 4.918032786885246
500 310 4.838709677419355
500 315 4.761904761904762
500 320 4.687500000000000
500 325 4.615384615384615
500 330 4.545454545454546
510 300 5.100000000000000
510 305 5.016393442622951
510 310 4.935483870967742
510 315 4.857142857142857
510 320 4.781250000000000
510 325 4.707692307692308
510 330 4.636363636363637
520 300 5.200000000000000
520 305 5.114754098360656
520 310 5.032258064516129
520 315 4.952380952380953
520 320 4.875000000000000
520 325 4.800000000000000
520 330 4.727272727272728
530 300 5.300000000000000
530 305 5.213114754098361
530 310 5.129032258064516
530 315 5.047619047619047
530 320 4.968750000000000
530 325 4.892307692307693
530 330 4.818181818181818
540 300 5.400000000000000
540 305 5.311475409836065
540 310 5.225806451612903
540 315 5.142857142857143
540 320 5.062500000000000
540 325 4.984615384615385
540 330 4.909090909090909