The formula to calculate Young's Modulus is:
\[ E = \frac{W_{\text{load}} \cdot \delta l}{A_{\text{base}} \cdot l_0} \]
Where:
Young's Modulus is a mechanical property of linear elastic solid substances. It describes the relationship between longitudinal stress and longitudinal strain.
Let's assume the following values:
Using the formula:
\[ E = \frac{W_{\text{load}} \cdot \delta l}{A_{\text{base}} \cdot l_0} \]
Evaluating:
\[ E = \frac{3600 \cdot 0.02}{10 \cdot 7} \]
The Young's Modulus is 1.02857142857143 N/m².
Load (N) | Elongation (m) | Area of Base (m²) | Initial Length (m) | Young's Modulus (N/m²) |
---|---|---|---|---|
1000 | 0.02 | 10 | 7 | 0.285714285714 |
1500 | 0.02 | 10 | 7 | 0.428571428571 |
2000 | 0.02 | 10 | 7 | 0.571428571429 |
2500 | 0.02 | 10 | 7 | 0.714285714286 |
3000 | 0.02 | 10 | 7 | 0.857142857143 |
3500 | 0.02 | 10 | 7 | 1.000000000000 |
4000 | 0.02 | 10 | 7 | 1.142857142857 |
4500 | 0.02 | 10 | 7 | 1.285714285714 |
5000 | 0.02 | 10 | 7 | 1.428571428571 |