The formula to calculate the Inradius of an Isosceles Triangle is:
\[ r_i = \frac{S_{\text{Base}}}{2} \sqrt{\frac{2S_{\text{Legs}} - S_{\text{Base}}}{2S_{\text{Legs}} + S_{\text{Base}}}} \]
The Inradius of an Isosceles Triangle is the radius of the circle inscribed inside the triangle. The Base is the third and unequal side of the triangle, while the Legs are the two equal sides.
Let's assume the following values:
Using the formula:
\[ r_i = \frac{6}{2} \sqrt{\frac{2 \cdot 9 - 6}{2 \cdot 9 + 6}} \approx 2.12132034355964 \]
The Inradius is approximately 2.12132034355964 Meters.
Base (Meters) | Legs (Meters) | Inradius (Meters) |
---|---|---|
5 | 9 | 1.879523528890281 |
5.5 | 9 | 2.005643633096050 |
6 | 9 | 2.121320343559643 |
6.5 | 9 | 2.226636064395191 |
7 | 9 | 2.321637353248780 |