The formula to calculate the Lateral Edge Length of a Right Square Pyramid is:
\[ le(Lateral) = \sqrt{h^2 + \frac{le(Base)^2}{2}} \]
The Lateral Edge Length of a Right Square Pyramid is the length of the straight line connecting any base vertex to the apex of the pyramid. The Height of a Right Square Pyramid is the length of the perpendicular from the apex to the base. The Edge Length of the Base is the length of the straight line connecting any two adjacent vertices of the base.
Let's assume the following values:
Using the formula:
\[ le(Lateral) = \sqrt{15^2 + \frac{10^2}{2}} = 16.583123951777 \]
The Lateral Edge Length of the Right Square Pyramid is 16.583123951777 meters.
Height (meters) | Edge Length of Base (meters) | Lateral Edge Length (meters) |
---|---|---|
14 | 10 | 15.684387141358123 |
14.5 | 10 | 16.132265804901678 |
15 | 10 | 16.583123951777001 |
15.5 | 10 | 17.036725037400821 |
16 | 10 | 17.492855684535900 |