The formula to calculate the Lateral Edge Length of a Right Square Pyramid is:
\[ le(Lateral) = \sqrt{\frac{le(Base)^2}{2} + \left(\frac{3V}{le(Base)^2}\right)^2} \]
The Lateral Edge Length of a Right Square Pyramid is the length of the straight line connecting any base vertex to the apex of the pyramid. The Edge Length of the Base is the length of the straight line connecting any two adjacent vertices of the base. The Volume of the Right Square Pyramid is the total quantity of three-dimensional space enclosed by the surface of the pyramid.
Let's assume the following values:
Using the formula:
\[ le(Lateral) = \sqrt{\frac{10^2}{2} + \left(\frac{3 \cdot 500}{10^2}\right)^2} = 16.583123951777 \]
The Lateral Edge Length of the Right Square Pyramid is 16.583123951777 meters.
Edge Length of Base (meters) | Volume (cubic meters) | Lateral Edge Length (meters) |
---|---|---|
9 | 500 | 19.581509852938137 |
9.5 | 500 | 17.926683301989684 |
10 | 500 | 16.583123951777001 |
10.5 | 500 | 15.499453436433603 |
11 | 500 | 14.634822426566744 |