Lateral Edge Length of Right Square Pyramid given Volume Calculator

Calculate Lateral Edge Length of Right Square Pyramid





Formula

The formula to calculate the Lateral Edge Length of a Right Square Pyramid is:

\[ le(Lateral) = \sqrt{\frac{le(Base)^2}{2} + \left(\frac{3V}{le(Base)^2}\right)^2} \]

Definition

The Lateral Edge Length of a Right Square Pyramid is the length of the straight line connecting any base vertex to the apex of the pyramid. The Edge Length of the Base is the length of the straight line connecting any two adjacent vertices of the base. The Volume of the Right Square Pyramid is the total quantity of three-dimensional space enclosed by the surface of the pyramid.

Example Calculation

Let's assume the following values:

Using the formula:

\[ le(Lateral) = \sqrt{\frac{10^2}{2} + \left(\frac{3 \cdot 500}{10^2}\right)^2} = 16.583123951777 \]

The Lateral Edge Length of the Right Square Pyramid is 16.583123951777 meters.

Conversion Chart

Edge Length of Base (meters) Volume (cubic meters) Lateral Edge Length (meters)
9 500 19.581509852938137
9.5 500 17.926683301989684
10 500 16.583123951777001
10.5 500 15.499453436433603
11 500 14.634822426566744