The formula to calculate the Lateral Surface Area of Cuboid (LSA) is:
\[ LSA = 2 \cdot h \cdot (l + w) \]
Where:
The Lateral Surface Area of Cuboid is the quantity of plane enclosed by all the lateral surfaces (that is, top and bottom faces are excluded) of the Cuboid.
Height of Cuboid is the vertical distance measured from base to the top of Cuboid.
Length of Cuboid is the measure of any one of the pair of parallel edges of base which are longer than the remaining pair of parallel edges of the Cuboid.
Width of Cuboid is the measure of any one of the pair of parallel edges of base which are smaller than the remaining pair of parallel edges of Cuboid.
Let's assume the following values:
Using the formula:
\[ LSA = 2 \cdot 8 \cdot (12 + 6) \]
Evaluating:
\[ LSA \approx 288 \, \text{square meters} \]
The Lateral Surface Area of Cuboid is approximately 288 square meters.
Height (h) (meters) | Length (l) (meters) | Width (w) (meters) | Lateral Surface Area (LSA) (square meters) |
---|---|---|---|
7 | 11 | 5 | 224.0000 |
7 | 11 | 6 | 238.0000 |
7 | 11 | 7 | 252.0000 |
7 | 12 | 5 | 238.0000 |
7 | 12 | 6 | 252.0000 |
7 | 12 | 7 | 266.0000 |
7 | 13 | 5 | 252.0000 |
7 | 13 | 6 | 266.0000 |
7 | 13 | 7 | 280.0000 |
8 | 11 | 5 | 256.0000 |
8 | 11 | 6 | 272.0000 |
8 | 11 | 7 | 288.0000 |
8 | 12 | 5 | 272.0000 |
8 | 12 | 6 | 288.0000 |
8 | 12 | 7 | 304.0000 |
8 | 13 | 5 | 288.0000 |
8 | 13 | 6 | 304.0000 |
8 | 13 | 7 | 320.0000 |
9 | 11 | 5 | 288.0000 |
9 | 11 | 6 | 306.0000 |
9 | 11 | 7 | 324.0000 |
9 | 12 | 5 | 306.0000 |
9 | 12 | 6 | 324.0000 |
9 | 12 | 7 | 342.0000 |
9 | 13 | 5 | 324.0000 |
9 | 13 | 6 | 342.0000 |
9 | 13 | 7 | 360.0000 |