The formula to calculate the Lateral Surface Area of Pyramid is:
\[ \text{Lateral Surface Area} = \text{le(Base)} \times \sqrt{(4h^2) + \text{le(Base)}^2} \]
Where:
The Lateral Surface Area of Pyramid is the total amount of two-dimensional space occupied by all the faces of the Pyramid, excluding the area of the base of the Pyramid.
Let's assume the following values:
Using the formula:
\[ \text{Lateral Surface Area} = 10 \times \sqrt{(4 \times 15^2) + 10^2} \]
Evaluating:
\[ \text{Lateral Surface Area} = 316.227766016838 \text{ square meters} \]
The Lateral Surface Area of Pyramid is approximately 316.23 square meters.
Edge Length (m) | Height (m) | Lateral Surface Area (square meters) |
---|---|---|
5 | 10 | 103.077640640442 |
5 | 15 | 152.069063257456 |
5 | 20 | 201.556443707464 |
10 | 10 | 223.606797749979 |
10 | 15 | 316.227766016838 |
10 | 20 | 412.310562561766 |
15 | 10 | 375.000000000000 |
15 | 15 | 503.115294937453 |
15 | 20 | 640.800280898815 |