The formula to calculate Lattice Parameter of BCC (aBCC) is:
\[ aBCC = \frac{4 \cdot r}{\sqrt{3}} \]
Where:
Lattice Parameter of BCC (Body Centered Cubic) is defined as the length between two points on the corners of a BCC unit cell.
Atomic Radius is the radius of the atom which forms the metallic crystal.
Let's assume the following values:
Using the formula:
\[ aBCC = \frac{4 \cdot r}{\sqrt{3}} \]
Evaluating:
\[ aBCC = \frac{4 \cdot 1.24E-10}{\sqrt{3}} \]
The Lattice Parameter of BCC is 2.86365733518054E-10.
Atomic Radius (r) | Lattice Parameter of BCC (aBCC) |
---|---|
1.2E-10 | 0.000000000277128 |
1.21E-10 | 0.000000000279438 |
1.22E-10 | 0.000000000281747 |
1.23E-10 | 0.000000000284056 |
1.24E-10 | 0.000000000286366 |
1.25E-10 | 0.000000000288675 |
1.26E-10 | 0.000000000290985 |
1.27E-10 | 0.000000000293294 |
1.28E-10 | 0.000000000295603 |
1.29E-10 | 0.000000000297913 |
1.3E-10 | 0.000000000300222 |