The formula to calculate the Lattice Parameter of FCC is:
\[ a_{FCC} = 2r\sqrt{2} \]
Where:
The Lattice Parameter of FCC (Face Centered Cubic) is defined as the length between two points on the corners of an FCC unit cell.
The Atomic Radius is the radius of the atom which forms the metallic crystal.
Let's assume the following value:
Using the formula:
\[ a_{FCC} = 2 \cdot 1.24E-10 \cdot \sqrt{2} \]
Evaluating:
\[ a_{FCC} = 2 \cdot 1.24E-10 \cdot \sqrt{2} \]
The Lattice Parameter of FCC is approximately 3.50724963468528E-10 Meter.
Atomic Radius (Meter) | Lattice Parameter of FCC (Meter) |
---|---|
1.2E-10 | 0.000000000339411 |
1.21E-10 | 0.000000000342240 |
1.22E-10 | 0.000000000345068 |
1.23E-10 | 0.000000000347897 |
1.24E-10 | 0.000000000350725 |
1.25E-10 | 0.000000000353553 |
1.26E-10 | 0.000000000356382 |
1.27E-10 | 0.000000000359210 |
1.28E-10 | 0.000000000362039 |
1.29E-10 | 0.000000000364867 |
1.3E-10 | 0.000000000367696 |