The formula to calculate the Length of the Angle Bisector of an Equilateral Triangle is:
\[ l_{\text{Angle Bisector}} = \frac{\sqrt{3}}{2} l_e \]
The Length of the Angle Bisector of an Equilateral Triangle is the length of the straight line from the vertex to its opposite side, dividing the vertex angle into two equal parts. The Edge Length of an Equilateral Triangle is the length of one of the sides of the Equilateral Triangle. In an Equilateral Triangle, all three sides are equal.
Let's assume the following value:
Using the formula:
\[ l_{\text{Angle Bisector}} = \frac{\sqrt{3}}{2} \times 8 = 6.92820323027551 \text{ Meter} \]
The Length of the Angle Bisector of the Equilateral Triangle is 6.92820323027551 Meter.
Edge Length of Equilateral Triangle (Meter) | Length of Angle Bisector (Meter) |
---|---|
7 | 6.062177826491070 |
7.1 | 6.148780366869514 |
7.2 | 6.235382907247957 |
7.3 | 6.321985447626401 |
7.4 | 6.408587988004844 |
7.5 | 6.495190528383288 |
7.6 | 6.581793068761732 |
7.7 | 6.668395609140175 |
7.8 | 6.754998149518618 |
7.9 | 6.841600689897062 |
8 | 6.928203230275506 |
8.1 | 7.014805770653950 |
8.2 | 7.101408311032393 |
8.3 | 7.188010851410836 |
8.4 | 7.274613391789280 |
8.5 | 7.361215932167723 |
8.6 | 7.447818472546167 |
8.7 | 7.534421012924611 |
8.8 | 7.621023553303054 |
8.9 | 7.707626093681498 |
9 | 7.794228634059941 |