The formula to calculate the Loan Amount (LA) is:
\[ LA = \left(\frac{PMT}{R}\right) \left(1 - \left(\frac{1}{(1 + R)^{CP}}\right)\right) \]
Where:
The Loan Amount is the original principal on a new loan or principal remaining on an existing loan.
Let's assume the following values:
Using the formula:
\[ LA = \left(\frac{4700}{0.2}\right) \left(1 - \left(\frac{1}{(1 + 0.2)^{10}}\right)\right) \]
Evaluating:
\[ LA = 19704.62 \]
The Loan Amount is 19704.62.
Annuity Payment | Interest Rate | Compounding Periods | Loan Amount |
---|---|---|---|
4500 | 0.15 | 9 | 21,472.13 |
4500 | 0.15 | 10 | 22,584.46 |
4500 | 0.15 | 11 | 23,551.70 |
4500 | 0.2 | 9 | 18,139.35 |
4500 | 0.2 | 10 | 18,866.12 |
4500 | 0.2 | 11 | 19,471.77 |
4500 | 0.25 | 9 | 15,584.08 |
4500 | 0.25 | 10 | 16,067.26 |
4500 | 0.25 | 11 | 16,453.81 |
4700 | 0.15 | 9 | 22,426.44 |
4700 | 0.15 | 10 | 23,588.21 |
4700 | 0.15 | 11 | 24,598.45 |
4700 | 0.2 | 9 | 18,945.54 |
4700 | 0.2 | 10 | 19,704.62 |
4700 | 0.2 | 11 | 20,337.18 |
4700 | 0.25 | 9 | 16,276.71 |
4700 | 0.25 | 10 | 16,781.37 |
4700 | 0.25 | 11 | 17,185.09 |
4900 | 0.15 | 9 | 23,380.76 |
4900 | 0.15 | 10 | 24,591.97 |
4900 | 0.15 | 11 | 25,645.19 |
4900 | 0.2 | 9 | 19,751.74 |
4900 | 0.2 | 10 | 20,543.11 |
4900 | 0.2 | 11 | 21,202.59 |
4900 | 0.25 | 9 | 16,969.33 |
4900 | 0.25 | 10 | 17,495.47 |
4900 | 0.25 | 11 | 17,916.37 |