The formula to calculate the Long Edge of Parallelogram is:
\[ eLong = \frac{1}{2} \sqrt{dLong^2 + dShort^2 + (2 \cdot dLong \cdot dShort \cdot \cos(\angle d(Acute)))} \]
Long Edge of Parallelogram is the length of the longest pair of parallel sides in a Parallelogram. Long Diagonal of Parallelogram is the length of the line joining the pair of acute angle corners of a Parallelogram. Short Diagonal of Parallelogram is the length of the line joining the pair of obtuse angle corners of a Parallelogram. Acute Angle between Diagonals of Parallelogram is the angle made by the diagonals of the Parallelogram which is less than 90 degrees.
Let's assume the following values:
Using the formula:
\[ eLong = \frac{1}{2} \sqrt{18^2 + 9^2 + (2 \cdot 18 \cdot 9 \cdot \cos(0.872664625997001))} = 12.3820756089042 \]
The Long Edge is 12.3820756089042 Meters.
Long Diagonal (Meters) | Short Diagonal (Meters) | Acute Angle (Radians) | Long Edge (Meters) |
---|---|---|---|
15 | 9 | 0.872664625997 | 10.949345352752825 |
16 | 9 | 0.872664625997 | 11.425003627896135 |
17 | 9 | 0.872664625997 | 11.902657356280985 |
18 | 9 | 0.872664625997 | 12.382075608904181 |
19 | 9 | 0.872664625997 | 12.863061090899391 |
20 | 9 | 0.872664625997 | 13.345444348982909 |