The formula to calculate the Long Edge of Parallelogram given Diagonals and Short Edge is:
\[ e_{\text{Long}} = \sqrt{\frac{d_{\text{Long}}^2 + d_{\text{Short}}^2 - (2 \cdot e_{\text{Short}}^2)}{2}} \]
The Long Edge of a Parallelogram is the length of the longest pair of parallel sides in a Parallelogram. The Long Diagonal of a Parallelogram is the length of the line joining the pair of acute angle corners of a Parallelogram. The Short Diagonal of a Parallelogram is the length of the line joining the pair of obtuse angle corners of a Parallelogram. The Short Edge of a Parallelogram is the length of the shortest pair of parallel edges in a Parallelogram.
Let's assume the following values:
Using the formula:
\[ e_{\text{Long}} = \sqrt{\frac{18^2 + 9^2 - (2 \cdot 7^2)}{2}} = 12.3895116933639 \]
The Long Edge of the Parallelogram is 12.3895116933639 meters.
Long Diagonal (meters) | Short Diagonal (meters) | Short Edge (meters) | Long Edge (meters) |
---|---|---|---|
16 | 9 | 7 | 10.931605554537724 |
16.5 | 9 | 7 | 11.297123527695003 |
17 | 9 | 7 | 11.661903789690601 |
17.5 | 9 | 7 | 12.026013470805694 |
18 | 9 | 7 | 12.389511693363866 |
18.5 | 9 | 7 | 12.752450744856850 |
19 | 9 | 7 | 13.114877048604001 |
19.5 | 9 | 7 | 13.476831971943554 |
20 | 9 | 7 | 13.838352503098047 |