The formula to calculate the Long Edge of Parallelogram given Height to Short Edge and Acute Angle between Sides is:
\[ e_{\text{Long}} = \frac{h_{\text{Short}}}{\sin(\angle_{\text{Acute}})} \]
The Long Edge of a Parallelogram is the length of the longest pair of parallel sides in a Parallelogram. The Height to Short Edge of a Parallelogram is the perpendicular distance between the shortest pair of parallel edges of a Parallelogram. The Acute Angle of a Parallelogram is the measure of the pair of opposite angles which are less than 90 degrees in a Parallelogram.
Let's assume the following values:
Using the formula:
\[ e_{\text{Long}} = \frac{8}{\sin(0.785398163397301)} = 11.3137084989864 \]
The Long Edge of the Parallelogram is 11.3137084989864 meters.
Height to Short Edge (meters) | Acute Angle (radians) | Long Edge (meters) |
---|---|---|
7 | 0.7853981633973 | 9.899494936613124 |
7.5 | 0.7853981633973 | 10.606601717799776 |
8 | 0.7853981633973 | 11.313708498986427 |
8.5 | 0.7853981633973 | 12.020815280173080 |
9 | 0.7853981633973 | 12.727922061359731 |