The maximum flux density for a core/coil geometry should be calculated to verify that it is below the specified value for a given core, so that the core doesn't saturate. This calculator is useful in matching a core size to the required power.
Equations:
\( B_{\text{max}} = B_{\text{max}}(\text{AC}) + B_{\text{max}}(\text{DC}) \)
\( B_{\text{max}}(\text{DC}) = \frac{L \cdot I_{\text{dc}} \cdot 10^8}{N \cdot A_c} \)
\( B_{\text{max}} = \frac{V_{\text{rms}} \cdot 10^8}{4.44 \cdot F \cdot N \cdot A_c} + \frac{L \cdot I_{\text{dc}} \cdot 10^8}{N \cdot A_c} \) gauss
Note: if no DC current flows, then the second term of the equation is dropped.
In terms of \( A_L (\mu H/100T^2) \):
\( L = \frac{N^2 \cdot A_L (\mu H/100T^2) \cdot 10^{-4}}{100} \)
\( B_{\text{max}}(\text{DC}) = \frac{N \cdot A_L (\mu H/100T^2) \cdot 10^4 \cdot I_{\text{dc}}}{A_c} \)